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Abstract 
The Deep Space Network (DSN) is a collection of ground 
antennas used to provide communication services for space 
missions at and beyond Earth.  Currently, nearly 30 people 
work full time to schedule 61 missions over a ten year 
horizon using a few disconnected tools.  The large manual 
and collaborative effort to generate schedules and resolve 
conflicts has spurred an effort to build a new scheduling 
application incorporating automated scheduling.  We will 
describe the basic design of this application, the Service 
Scheduling Subsystem (SSS), and discuss some of the 
design issues.  We describe the messaging interface to the 
automated scheduler, including the request and constraint 
language and support for user-defined constraints.  There 
are many other features that we believe will heavily 
influence the success of the application.  These include an 
efficient schedule editing interface, request management, 
non-interfering suggestions from automated scheduling, 
user-defined alerts, hypothetical schedules, and automated 
negotiation. 

Introduction   
The Deep Space Network (DSN) consists of three 
complexes of ground antennas located in California, 
Madrid, and Canberra.  There are 16 antennas that range in 
size from 26 to 70 meters in diameter.  This network 
primarily supports interplanetary missions and radio and 
radar astronomy but also supports some Earth orbiting 
missions.  DSN services for spacecraft include command 
uplink, data downlink, tracking, and navigation.  While 
150 missions are listed as DSN users, about 20 spacecraft 
are allocated resources in a 4-month schedule.   
 
Schedules are currently manually generated a year into the 
future with allocations to the minute.  These are currently 
generated a week at a time and average 370 tracks 
(allocation of an antenna to a mission over a time period) 
per week.  These tracks are typically 1 to 8 hours long and 
must be allocated in a viewperiod (i.e. a time period when 
the spacecraft is visible to the antenna).  There are around 
1650 of these viewperiods defined per week.  Clement and 
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Johnston describe the scheduling problem in greater detail 
(2005). 
 
The greatest inefficiency of the current scheduling process 
is not in generating low-conflict schedules but in trying to 
meet the ill-specified requests of the missions.  (The DSN 
calls these requests “requirements,” but we will call them 
“requests” to avoid confusion with software requirements.)  
The requests used for generating schedules are currently 
only specified in hours/week per antenna.  DSN schedulers 
need more information to determine the acceptable 
duration and frequency of the tracks generated.  While 
missions convey some of this information over the phone 
or e-mail to schedulers, there are no records of this 
additional request information, and subsequent proposed 
schedule changes often conflict with the intended requests.  
These changes often affect multiple missions, resulting in 
frequent meetings, e-mails, and phone calls to rework the 
schedule.  
 
Historically, scheduling for the DSN has been split into 
three horizons (0 to 8 weeks, 8 weeks to 2 years, and 
beyond 2 years) with more detail and conflict checking for 
nearer-term schedules.  The missions have scheduling 
representatives who work with other groups of schedulers 
who can update the database.  Each group has their own 
scheduling tools with almost no overlap.  Currently, there 
are around 30 full time employees scheduling for the DSN.   
 
A working group at the Jet Propulsion Laboratory (JPL) 
developed a set of design principles for an improved DSN 
Scheduling process and system: 
 
♦ Seamless scheduling for all planning horizons 
♦ Remove artificial temporal boundaries 
♦ A master schedule always exists, visible to all users 
♦ A single process and tool suite is used by all classes of 

users 
♦ Requests and schedules are fully traceable 
♦ Conflicts are resolved at the lowest level possible, peer-

to-peer by default 
♦ Meetings are called only as needed (e.g., to resolve 

difficult conflicts or to address an emerging asset 
contention period) 



♦ Workspaces are provided to users to develop requests 
(especially for what-if analysis) 

♦ Need both web-based and workstation-based capabilities 
♦ Distinguish global (shared) workspace and local 

(private) workspace; private workspace may span a set 
of peers 

♦ Need scalability (loading, # users, # assets) and 
extensibility (evolving technology) 

 
The most dramatic change to the process will be to give 
missions direct control of the schedule.  Instead of having 
to help another group of schedulers understand their 
requests and then check the resulting schedule, the 
missions will be able to directly change the tracks in the 
schedule for their mission. 
Based on the recommendations of the working group, JPL 
has begun development of a Service Scheduling Subsystem 
(SSS).  The users of this system would be the current 
schedulers (who work out the logistics of scheduling), 
mission operations staff (who provide the 
objectives/requests of scheduling), managers (who look at 
resource availability and perform what-if analysis for 
different mission scenarios), and antenna complex 
maintenance staff (who must ensure that the antennas 
serviced regularly to maintain operability).  The basis of 
the design of the SSS is a set of functional requirements 
provided by a representative group of users. 

Service Scheduling Subsystem   
The major functions of the SSS are a graphical user 
interface (GUI), data management, automated scheduling, 
and reporting, as shown in Figure 1.  We describe some of 
the design issues related to these functions, giving special 
attention to an automated scheduling service, called the 
Scheduling Engine (SE).  The extension of the request 
language is reported elsewhere (Clement & Johnston, 
2005). 
 
 The functions provided in the subsystem as depicted in 
Figure 2-1 include a: 
♦ User Interface 

The User Interface function provides a user with the 
interactive graphic displays and text input and 
output mechanisms needed to enter all relevant 
scheduling items and to display them as well as the 
schedules generated. 

♦ Database Management 
There may be more than one database with this 
subsystem, but there shall be only one master 
schedule.  In addition to the master schedule, a 
record of requirements transactions or change 
history, along with the chronology of requirements 
input for traceability (of scheduled activities to 
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original requirements), management of private 
workspaces, and contingency schedule support is 
contained in this function. 

♦ Schedule Generation 
The automatic Schedule Generation function 
consists of several elements necessary for 
maintaining the master schedule and Private 
Workspace schedules. These elements include 
retrieving up-to-date view periods and equipment 
status.  The heart of the scheduling function is a 
scheduling engine that generates schedules, finds 
conflicts, and then reduces the number of conflicts 
in the schedule.  

♦ Reporting  
The Reporting function provides network load 
forecasts for supporting ‘what-if’ studies and other 
reporting features for the subsystem including user 
defined reports, conflict reports, metrics, view 
period files for sequencing, allocation files for 
sequencing, and traceability reports. 

 
The data flow among these major components is shown in 
Figure 2.  Some amount of functionality will be executed 
on the user’s computer for the user interface.  Part of this 
involves administration to manage user permissions, to 
update the list of assets and when they are available, and to 
modify constraint rules describing legal allocation of 
resources.  For example, two spacecraft may use the same 
antenna if only one is uplinking and if the antenna can 
point to both spacecraft at the same time (e.g. both at 
Mars).  These kinds of rules change over the years when 
new service capabilities or new kinds of missions come 
along.  The Service Preparation Subsystem (SPS) 
calculates and stores viewperiod information based on 
trajectory.  These calculations take into account many 
physical properties of antennas, including cable wrap and 
keyhole constraints.  They are calculated independently 
from the schedule by always “stowing” the antennas back 
to a neutral position after every track. 

Scheduling Engine 
The intended use of automated scheduling is to provide 
suggestions for schedule changes based on request 
changes.  This also includes generating a schedule from 
scratch based on bulk input of requests.  Automated 
scheduling is made available to the rest of SSS as a 
network service using messaging. 
 
User interaction with the SE is session-oriented. To begin 
any interaction, the user initiates a session which persists 
until the interaction is complete, or until the session times 
out and is destroyed by the SE. Interactions that refer to 
non-existent sessions will return an error status. 
 
Session initiation incorporates an authentication and 
authorization process, which makes use of a standard 
authentication and authorization mechanism used 
elsewhere in SSS. For the purposes of this interface, 



sufficient information must be provided in the interface to 
enable appropriate authentication and authorization of the 
user. 

Initiate Session Request – initiates a session for 
scheduling and includes information about the user, the 
purpose of session, and timeout conditions.  

Initiate Session Response – the status of the session as a 
response to an Initiate Session Request message, which 
includes a session ID among other information described 
below.    All request messages are processed in a session 
identified by ID. 

Terminate Session Request – terminates a specified 
session, possibly in the middle of processing other 
messages. 

Status Request – requests status of a specific session 

Status Response – the status which includes whether a 
session exists, is “ok,” has an error, and/or is busy; what 

fraction of processing has completed; a description of any 
error; the session ID; an ID for the current or last 
completed processing step (to use as a savepoint); and the 
timeout conditions 

Generate Schedule Request – generates a schedule of 
tracks with instructions on what requests/requirements to 
schedule, the time range within which to schedule, what 
schedule and viewperiod data to take into account (e.g. 
missions, assets, workspace), whether to return the entire 
schedule or just differences, a time limit for processing, 
scheduling strategies to use, any changes to default 
constraint rules 

Generate Schedule Response – the generated schedule, 
the changes made to the schedule, or both 

Identify Conflicts Request – requests conflicts with 
constraint rules and/or requests in a specified schedule 
(time range, which missions, assets, workspace) and within 
a specified processing time limit 

 

 
 

Figure 1: Service Scheduling Subsystem Description



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Data flow among components of SSS and the SPS database 
. 

 

Identify Conflicts Response – the status and a set of 
conflicts.  A conflict includes a type, attributes, and 
associated tracks. 

Resolve Conflicts Request – this is the same as the 
Generate Schedule Request message except there are no 
request/requirements to schedule. 

Resolve Conflicts Response – this has the same structure 
as the Generate Schedule Response message. 

Apply Schedule Changes Request – schedule changes to 
apply to a session, possibly in the middle of processing 
other messages 

Apply Schedule Changes Response – the session status 
in response to applying schedule changes 

Terminate Processing Request – terminates processing 
of any prior request messages 

Undo To Step Request – reverts the schedule back to its 
state when status was reported for the given step ID. 

Undo To Step Response – the session status in response 
to an Undo To Step Request message 

Figure 3 illustrates an example of interactions that occur 
when a user generates a schedule. The participants in this 
diagram include: 
1) SSS scheduler user: this represents the customer for 

the schedule, working through other components of 
SSS (e.g. client GUI or web-based interface). (Note 
that the end user does not directly interact with the 
SE.) 

2) SE manager: this is the server process that interacts 
with the user to handle the generate schedule request, 
and with internal elements of the schedule engine to 
satisfy the request. The SE manager is always online 
to handle user interactions. 

3) SE session: a transient process or set of processes that 
perform the computational and database actions 
required to satisfy a user request, or a related series of 
requests. Because a session maintains the state of a 
particular interaction with a user, incremental 
interactions are readily supported without long delays 
for re-initialization. Many sessions may exist at one 
time within the SE, to handle many simultaneous user 
interactions. They may be distributed across multiple 
hardware components for performance and load 
balancing. 

4) SSS DB: the SSS database, from which schedule and 
related data is retrieved, and to which schedule 
changes and status data is stored. The SE session may 
also connect to the SPS database, for viewperiod and 
asset status/schedule data, but that is not shown in this 
diagram. 

 
This message interface to the SE enables a wide variety of 
ways to schedule on behalf of a user in terms of who (or 
what) submits messages and when they are submitted.  
One approach briefly considered was to not allow the 
users to make edits to the schedule and have the SE 
schedule all requirements and resolve all conflicts.  Thus, 
the users would manage their schedules by editing their 
requirements.  Instead, we decided that the SE should 
only offer suggestions and that only the user could 
commit suggested changes to the database.  Because 
conflict resolution is the responsibility of the users, 
missions will want to schedule their requirements as early 
as possible in order to resolve conflicts as early as 
possible.  While there is no formal prioritization of 
missions or their requests, it is usually common sense 
which mission will win a fight for a resource.  For 
example, launches and orbit insertion take priority over 
telemetry, and primary missions have precedence over 
extended missions.  Thus, in a collegial atmosphere, there 
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Figure 3: UML sequence diagram of interactions for the “generate schedule” scenario 
 
is no reason to require all missions to supply their 
requests at the same time for a third party to schedule.  
 
Another simple approach to using the SE interface would 
be to have a webpage where the user fills out the fields of 
different messages and the SE processes them.  However, 
it is more beneficial to predict what the user might want 
to process and make unobtrusive suggestions.  For 
example, if a user works only in a few private 
workspaces, once the user log into SSS, SSS can invoke 
the SE to resolve any conflicts in those workspaces.  This 
could even be done when the user is offline and a 
schedule change affects a private workspace.  If the user 
is drafting new requirements, there is no point in waiting 
for the user to push a button to invoke the SE.  The SE 
could be hypothetically scheduling the requests (in its 
own private workspace) as the user drafts.  This can be 
very useful in visualizing the requirement as a potential 
schedule and indicating to the user mistakes where the 
specified request is not what is intended.  Having 
solutions ready when the user wants them could be the 
difference in whether a system like SSS is successful. 
 

Another intended use of the SE interface is to allow users 
to “bend the rules” in order to more flexibly explore 
hypothetical changes by selectively choosing what 
schedule and constraint data to schedule against.  This is 
especially useful in determining whether to change 
requirements to resolve a conflict.  For example, a user 
may have hardened a requirement to lock down on a 
particular time and antenna so that the mission could 
assume that the schedule was fixed in order to continue 
operations planning.  However, if another mission 
requested the same resources for a more critical activity, 
then the user could easily disable the request to lock down 
on the time and resource and explore possible changes.  
Users can also override user authorization constraints on 
what mission’s data they can modify in order to explore a 
ways other missions can resolve the conflict.  Then, the 
workspace can be sent as a proposal to the affected 
missions to get their approval for the changes.  A future 
work item is to schedule based on multiple objectives so 
that users can propose schedule changes that benefit 
multiple missions or minimize the concessions needed to 
resolve a conflict. 
 



A significant challenge for the SE is being able to 
schedule for user-definable constraints.  If constraint rules 
for antennas and missions change over the years, it will be 
costly to make code changes to be able to schedule for the 
new rules.  Thus, it is important that the SE (in effect) be 
able to schedule for unknown problems.  We take a 
somewhat passive approach by allowing constraints to be 
specified as SQL queries and taking general approaches to 
rescheduling that we hope to be effective.  The idea is to 
recognize conflicts as SQL queries that return records 
with track identifiers.  Then, those tracks are considered 
to be involved in the conflict(s) and are possibly causing 
the conflict(s), so they will be considered for 
rescheduling.  A local search approach is effective at 
rescheduling with minimal changes.  Both local search 
and exhaustive search algorithms can be used in 
conjunction to reschedule with minimal changes (Clement 
& Johnston, 2005). 
 

Data Management 
There are a few subtle issues in managing workspace, 
request, and change history data and implementing an 
undo mechanism.  The DSN users want change history in 
order to analyze how a mission’s requests have changed 
over time (to see if the mission is asking for more 
resources than initially agreed to by NASA, for instance).  
Undo is simply used to back out of changes while editing.  
Undo information is basically the same as detailed change 
history for a short period time, so there is no need to have 
separate representations and storage for these similar 
concepts. 
 
One basic question to answer is how will schedule data be 
committed to the master schedule or to a workspace.  One 
choice is SSS automatically commits every detailed edit 
to the database, and the undo mechanism can reverse edits 
made in prior SSS sessions.  Another approach is to 
commit changes only when the user explicitly saves the 
edits, in which case undo/change history information 
could be stored up until the last save, and prior saves 
could be change history checkpoints.  Then, for how long 
should undo/change history information be saved?  Our 
current thought is that without an explicit save 
mechanism, unintended changes could more easily be 
committed without notice, so we lean towards having an 
explicit save.  Undo/history information could be kept at 
larger granularities for older data.  For example, 
checkpoints could be saved once a week for changes 
made more than 6 months ago. 
 
Now what if two users have permissions to the same 
mission, and one wishes to undo their committed edits 
even though the other user committed edits concurrently?  
Should the undo not be allowed?  Should it only be 
allowed if also undoing the edits of the other user?  
Should no more than one user have permissions to the 
same mission (or same mission and timeframe)?  If the 

users’ edits are in non-overlapping timeframes then it is 
possible to undo the edits of one without the other, but if 
only the tracks edited are different, it is not obvious how 
to determine separability since one user’s edit could be 
indirectly caused by the other’s even if they involve 
different tracks.  While we wish to be able to smartly 
detect whether user changes are separable in SSS, this 
may require a lot of development, so we aim to first not 
bother with separating edits and to request confirmation 
from users before allowing them to undo other users’ 
edits. 
 
Workspaces are schedules derived from the master 
schedule or another workspace, and they can easily 
become inconsistent.  For example, if workspace B is 
derived from workspace A, and some user attempts to 
delete a track in A that B has modified, what is the 
appropriate behavior? 
1. The track is not allowed to be deleted in A. 
2. The track is deleted only in A, and committing B (after 

a warning) will add the track back to A. 
3. The track is deleted in A and in B (and users of B are 

warned). 
4. The track is deleted in A, and users accessing B are 

notified of the deletion and must resolve the 
inconsistency before committing any more changes 
(or the possible resolution choices are listed for the 
user select). 

We believe the fourth option is the safest, but the third 
option is much easier to implement while still being 
reasonable. 
 
The latest version of Oracle (10g) has a workspace 
management feature that allows the database to manage a 
workspace data as changes to another workspace (or the 
master).  It appears that the SSS workspaces can be easily 
implemented using OWM (Oracle Workspace 
Management).  Change history checkpoints are also just 
changes relative to other data, so it is also possible that 
change history and even an undo mechanism could be 
implemented in OWM. 
 
Managing request data is another challenge for SSS.  
Users want to know what requests have been satisfied, 
what have not, and how that has changed over time.  The 
database needs to maintain a link between a request and 
the tracks in the schedule that fulfill it (or try to fulfill it).  
Users also want to edit the schedule directly and 
independently of the requirements.  A problem arises 
when a user’s edits conflict with the associated request, 
but the user wants the edits.  In the past the integrity of 
requests was enforced such that edits were not allowed to 
violate them, but the users explicitly asked to break the 
link between the requests and the schedule because it was 
too annoying to edit the requests in order to edit the 
schedule.  SSS is required to maintain this link, so either 
the schedule is allowed to disagree with the requests (and 
the user is not pestered with conflict messages), or the 



requests must be automatically repaired to agree with the 
schedule edits.  A simple way to repair a request is by 
using an override request where one requirement 
supersedes or replaces the other.  The overriding request 
can simply be to have the track as edited, and it overrides 
the prior violated request.  The disadvantage to adding 
overriding requests is that many edits can lead to a 
bloating of requests such that they are difficult to manage.  
We find that either of these solutions is acceptable and 
hope to provide both capabilities in SSS. 

User Interface 
The user interface design is arguably the most important 
part of SSS since it is difficult to create intuitive, efficient 
user interfaces, and there are no greatly successful mixed-
initiative planning applications to serve as a model for 
SSS.  Creating a user interface for editing temporal 
constraints in MAPGEN for the Mars Exploration Rover 
mission was the key to its adoption (Bresina et al., 2005), 
but editing temporal constraints is just one aspect of 
creating requirements.  PASSAT (Plan-Authoring System 
based on Sketches, Advice, and Templates) is an 
ambitious vision for interactive tools for general mixed-
initiative planning (Myers et al., 2003) and builds on a 
prior mixed-initiative system (SIPE-2) that has had 
success in military domains (Wilkins, 1993).  We try to 
follow some of their design principles.  By providing 
suggested schedule changes to meet higher level requests, 
SSS helps users fill out sketches of plans.  The 
automation of scheduling is completely controllable by 
the user since the SE only provides suggestions, and only 
the user can commit changes to the database.  SSS is 
flexible like PASSAT in its ability to allow users (in a 
workspace) to turn constraint rules on and off, to lock and 
unlock track timing and asset allocations, to modify tracks 
of other missions, to override requests when making 
inconsistent edits to the schedule, and to choose which 
parts of the schedule (missions and assets) to consider 
when scheduling.  We increase usability like PASSAT by 
allowing checkpoints to be saved and planning operations 
to be undone.  While PASSAT shares many of the same 
user interface objectives as SSS, there are other notable 
mixed-initiative planning systems that Myers et al. briefly 
describe as related work (2003). 
 
As mentioned earlier, users can send or share private 
workspaces to propose changes a group of missions can 
make to resolve a conflict.  Using an automated scheduler 
to recommend solutions can greatly reduce human effort 
in finding resolutions to conflicts, but it does not relieve 
the communicative part of the negotiation process.  One 
approach is to use an automated multi-objective scheduler 
to try to find solutions that favor all missions involved.  
This can reduce the number of rejections and 
counterproposals in the negotiation.  Another 
complementary approach is for the mission to allow SSS 
to generate proposals and responses automatically.  While 
the user would not want the system to make all decisions, 

in some cases the decision is obvious.  For example, the 
system should always refuse proposals to reschedule a 
critical track and should always accept proposals that 
fulfill unmet requirements.  For proposals to which the 
system may not automatically respond, it can make 
suggestions, including counterproposals (based on multi-
objective scheduling).  As users gain more confidence, 
they can define situations in which the system is allowed 
to respond automatically.  Not only can this reduce the 
human involvement in negotiation, but also more 
negotiations can take place in order to create better 
overall schedules.  This same idea applies to a single user 
scheduling for a single mission—the user could authorize 
SSS to make scheduling decisions without user-
intervention under certain conditions.  These conditions 
could be specified as SQL and processed similar to user-
defined constraint rules.  
 
Other required features of SSS are user-definable 
notifications (such as e-mail when a change conflicts with 
a user’s mission) and user-definable reports.  Both of 
these are similar to the user-definable constraints and 
user-definable automated response conditions.  The 
underlying language can be SQL.  A challenge is how to 
get users to express SQL through a GUI without having 
them learn SQL.  As this is a common database usability 
issue, existing tools may work suitably.  The user-defined 
reports have an extra layer of complication in how to get 
users to express a graphical layout of data return from 
SQL queries.  Again, there are existing approaches that 
may be fruitful (e.g. cascading style sheets). 
 
There are many other user interface issues that we have 
yet to work out.  One particularly important aspect of the 
user interface is how the user will interact with the 
scheduling engine.  In the Scheduling Engine section, we 
discuss ways that the SE could be invoked efficiently, but 
the manner in which suggestions are presented to the user 
is equally important.  Another is drag-and-drop editing of 
tracks—how can a user use a mouse to place a track to 
start on a specific minute in a Gantt chart displaying a 
week schedule? 

Other Related Work 
 
In general, space applications often differ from others in 
that scheduling requires rich languages for modeling 
temporal relationships, spacecraft instruments, and 
dynamics (e.g. Eggemeyer et al. 1990, Muscettola et al. 
1998, Chien et al. 2004, and Ai-Chang et al. 2004).  For 
DSN scheduling, the complexity of antenna resources is 
removed by restricting how they can be used.  However, 
mission requirements for DSN resources are not trivial to 
model (Clement and Johnston, 2005). 
 
There has been much work aimed at automating the DSN 
scheduling process.  For many years, the Operation 



Mission Planner (OMP-26) used heuristic search to 
allocate 26-meter antennas to missions and linear 
programming to adjust track time intervals (Kan et al. 
1996).  Other automated scheduling tools were research 
projects and were never deployed.  LR-26 is a 
customizable heuristic scheduling system also for the 26-
meter antennas using Lagrangian relaxation and constraint 
satisfaction search techniques (Bell 1997).  The Demand 
Access Network Scheduler (DANS) expanded the scope 
to include all antennas using a heuristic iterative repair 
approach (Chien et al. 1997).  These systems schedule 
mission requirements of the form, "four 15-minute tracks 
every day." In this paper, we consider an approach that 
combines some of the strengths of these systems.  Other 
GUI planning tools that have been used for forecasting, 
analysis, and manual scheduling include TIGRAS 
(Borden et al. 1997) and FASTER (Werntz et al. 1993). 
 
Other systems have investigated oversubscribed 
scheduling problems that capture the basic constraints of 
DSN's mid- to long-term resource allocation. The Air 
Force Satellite Control Network (AFSCN) also schedules 
satellite communications requests, on a larger number of 
satellites and ground stations, but limited to one day at a 
time. Requirements are more simply specified as an 
ordered list of resource and time window pairs 
(Barbulescu, Watson et al. 2004; Barbulescu, Whitley et 
al. 2004).  For this problem, which exhibits "plateaus" in 
the search to minimize the number of conflicting 
activities, local repair techniques have been found less 
effective than approaches which make more moves at 
once. Another satellite scheduling problem is that of fleets 
of Earth observing satellites where the activities to 
schedule have similar kinds of viewperiod constraints, but 
additionally require onboard resources such as 
instruments and data recorders (Frank, Jonsson et al. 
2001). In this problem, however, the different requests are 
prioritized, and the goal of finding a "best" subset to fit on 
the schedule can be addressed with a greedy approach 
using texture-based heuristics, as in e.g. (Beck, Davenport 
et al. 1997). 

Conclusion 
The development of SSS is a unique opportunity to 
deploy mixed-initiative scheduling system.  There is 
strong support from users to implement this new 
scheduling application, and automated scheduling is 
recognized as an essential ingredient to its success.  
Exploring approaches to meet the requirements placed on 
SSS has uncovered many general mixed-initiative 
planning design issues that strongly impact the user’s 
flexibility and control of scheduling.  In particular, the 
interface for managing requests and suggesting changes 
from a scheduling engine must be carefully designed to 
avoid taxing the user.   
 

Acknowledgments 
The ideas and design decisions for the SSS are a product 
of many individuals thinking about this problem over 
many years, of which the authors are but two.  The 
research described in this paper was carried out at the Jet 
Propulsion Laboratory, California Institute of 
Technology, under a contract with the National 
Aeronautics and Space Administration. 

References 
Ai-Chang, M., J. Bresina, L. Charest, A. Chase, J. C.-J. 
Hsu, A. Jonsson, B. Kanefsky, P. Morris, K. Rajan, J. 
Yglesias, B. G. Chafin, W. C. Dias and P. F. Maldague 
(2004). "MAPGEN: mixed-initiative planning and 
scheduling for the Mars Exploration Rover mission." 
IEEE Intelligent Systems 19(1): 8-12. 

Barbulescu, L., J.-P. Watson, L. D. Whitley and A. E. 
Howe (2004). "Scheduling Space-Ground 
Communications for the Air Force Satellite Control 
Network." Journal of Scheduling 7(1): 7-34. 

Barbulescu, L., L. D. Whitley and A. E. Howe (2004). 
“Leap Before You Look: An Effective Strategy in an 
Oversubscribed Scheduling Problem”. AAAI 2004. 

Beck, J. C., A. J. Davenport, E. M. Sitarski and M. S. Fox 
(1997). “Texture-Based Heuristics for Scheduling 
Revisited”. AAAI 1997. 

Bell, C. (1992). "Scheduling Deep Space Network Data 
Transmissions: A Lagrangian Relaxation Approach," 
Technical Report, Jet Propulsion Laboratory. 

Borden, C., Y. Wang, and G. Fox (1997). “Planning and 
Scheduling User Services for NASA’s Deep Space 
Network,” Working Notes of the 1997 International 
Workshop on Planning and Scheduling for Space 
Exploration and Science. 

Bresina, J., A. Jónsson, P. Morris, and K. Rajan (2005). 
Mixed-Initiative Activity Planning for Mars Rovers, 
IJCAI-05, page 1709. 

Chien, S., R. Lam, Q. Vu (1997). “Resource Scheduling 
for a Network of Communications Antennas,” IEEE 
Aerospace Conference. Aspen, CO.  

Chien, S., R. Sherwood, D. Tran, B. Cichy, G. Rabideau, 
R. Castano, A. Davies, R. Lee, D. Mandl, S. Frye, B. 
Trout, J. Hengemihle, J. D'Agostino, S. Shulman, S. 
Ungar, T. Brakke, D. Boyer, J. VanGaasbeck, R. Greeley, 
T. Doggett, V. Baker, J. Dohm, F. Ip (2004). “The EO-1 
Autonomous Science Agent,” Proceedings of AAMAS. 

Clement, B.J. and M.D. Johnston. The Deep Space 
Network Scheduling Problem. in IAAI. 2005. Pittsburgh, 
PA: AAAI Press. 

Dechter, R., I. Meiri and J. Pearl (1991). “Temporal 
Constraint Networks.” Artificial Intelligence 49: 61-96. 



Eggemeyer, C., S. Grenander, S. Peters and A. Amador 
(1997). Long Term Evolution of a Planning and 
Scheduling Capability for Real Planetary Applications. 
Working Notes of the First International Workshop on 
Planning and Scheduling for Space, Oxnard, CA. 

Frank, J., et al. Planning and Scheduling for Fleets of 
Earth Observing Satellites. in I-SAIRAS 2001. 2001. 

Kan, E.J., J. Rosas, and Q. Vu, Operations Mission 
Planner - 26M User Guide Modified 1.0. 1996, JPL 
Technical Document D-10092. 

Muscettola, N., P. Nayak, B. Pell, and B. Williams 
(1998). “Remote Agent: To Boldly Go Where No AI 
System Has Gone Before,” Artificial Intelligence 103(1-
2):5-48, August. 

Myers, K. L.,  P. A. Jarvis, W. M. Tyson, and M. J. 
Wolverton. A Mixed-initiative Framework for Robust 
Plan Sketching, In Proceedings of the 13thInternational 
Conferences on AI Planning and Scheduling , Trento, 
Italy, June, 2003. 

Wilkins, D. E. Using the SIPE-2 Planning System: A 
Manual for Version 4.3, Artificial Intelligence Center, 
SRI, 1993. International, Menlo Park, CA. 

Werntz, D., S. Loyola, and S. Zendejas. FASTER - A tool 
for DSN forecasting and scheduling. in Proceedings of 
9th AIAA Computing in Aerospace Conference 

 
 


